
SIAM J. SCI. STAT. COMPUT.

Vol. 9, No.2, March 1988
@ 1988 Society for Industrial and Applied Mathern,lics

006

THE IMPACT OF HARDWARE GATHER/SCATTER ON SPARSE GAUSSIAN
ELIMINATION*

JOHN G. LEWISt AND HORST D. SIMONt

Abstract. Recent vector supercomputers provide vector memory access to "randomly" indexed vectors,
whereas early vector supercomputers required contiguously or regularly indexed vectors. This additional

capability, known as "hardware gather/scatter," can be used to great effect in general sparse Gaussian
elimination. In this note we present some examples that show the impact of this change in hardware on the

choice of algorithms for sparse Gaussian elimination. Common folk wisdom holds that general sparse
Gaussian elimination algorithms do not perform well on vector computers. Our numerical results demonstrate

that hardware gather/scatter allows general sparse elimination algorithms to outperform algorithms based

on a band, envelope, or block structure on such computers.

Key words. sparse Gaussian elimination, sparse matrices, reordering algorithms, vector computers,
vectorization, hardware gather/scatter

AMS(MOS) subject classification. 65F05

Background. Early experience with sparse Gaussian elimination on vector come
puters [3] showed none of the dramatic improvements in speedup encountered in other
linear algebra computations. This is due to the fact that Gaussian elimination witha
sparse data structure requires access to irregularly spaced data. Early vector computers,
such as the CRAY-1 and the CYBER 205 computers, allow vector memory transfers
only for contiguously or regularly spaced vectors. Most sparse Gaussian elimination
algorithms spend the vast majority of the factorization execution time in a loop of the
following type:

INTEGER I, N, M
INTEGER INDEX (M)
REAL A, X(M), Y(N)

DO 10 1= 1, M
Y(INDEX (1)) = A * X(1) + Y(INDEX 1))

10 CONTINUE

The indexing or indirect addressing for the vector Y creates irregular spacing in the
data and prevents use of the vector arithmetic units on early vector computers.

This loop is often referred to as a sparse or indexed SAXPY. The efficiencyof
the implementation of this loop determines the performance of the sparse factorization
algorithm. Because of the importance of this loop, or kernel, a subroutine called
SAXPYI, which follows the spirit and the notation of the BLAS [6], has been proposed
as a facility in extensions of the BLAS [2].

The use of the SAXPYI loop as presented above, in FORTRAN, would result in
no use of the vector hardware of early supercomputers. The loop would be executed
using scalar instructions only, producing no speedup at all over equivalent scalar
computers. Indeed, the indexing of the result vector Y prevents vectorization on any
existing vector computer unless it is known that the indices are distinct. Even on current

* Received by the editors June 23, 1986; accepted for publication (in revised form) April 15, 1987.
t Boeing Computer Services, Engineering Technology Applications, Seattle, Washington 98124.

304

vector computer:
compiler.

When the i
rewritten to allo'

and Neves [1] 2
100, and determ:
for which each (
the CYBER 203
For reasonable (

of the six altern.
This alternative

c
c
c

c
c
C

c
c
c

Althoughtt
use of the vector
transfers are iso
assembly langua
SAXPY is know
operations perfo

On a CRA)!
executes at a ma
of 155 megaflop
[11] analyzed tl1
language was
implementation
asymptotically a
the GSS formula
computation for

In contrast,
elimination algo
fundamental inn
computers. Ho\\



strial and Applied Mathematics
006

o\RSE GAUSSIAN

lomly" indexed vectors,
vectors. This additional
eneral sparse Gaussian
mge in hardware on the
Ids that general sparse
'ical results demonstrate

rform algorithms based

lms, vector computers,

on on vector com-
Icountered in other
elimination with a
, vector computers,
memory transfers

ussian elimination
ne in a loop of the

lar spacing in the
, computers.

The efficiency of
>arse factorization
subroutine called

las been proposed

'1[,would result in
,ould be executed
equivalent scalar

ctorization on any
~t.Even on current

--, .

THE IMPACT OF HARDWARE GATHER/SCATTER

~1

11

vectorcomputers, the SAXPYI loop does not vectorize without using directives to the
compiler.

When the indices are known to be distinct the indexed SAXPY loop can be
rewrittento allow some use of the vector hardware on any vector computer. Dembart
and Neves [1] analyzed seven different formulations of this loop on a CDC STAR
100,and determined that there were combinations of vector length and vector density
for which each of the formulations was fastest. Similar analyses by these authors for
the CYBER 203 and 205 showed corresponding results, although the ratios changed.
For reasonable combinations of vector length and vector density the most important
of the six alternatives to the original scalar code was the same on all three machines.
This alternative is:

c
c
c

gather the sparse elements into a dense vector

DO 100 1= 1, M
TEMP (1) = Y(INDEX (1))

100 CONTINUE
c
c
C

perform a vectorizable dense SAXPY

DO 200 1= 1, M
TEMP (1) = TEMP (1) + A * X (1)

200 CONTINUE
,C
C
C

scatter the elements back into the sparse vector

DO 300 1= 1, M
Y(INDEX (1)) = TEMP (1)

300 CONTINUE

ti

Although this looks far more complicated than the original loop, it permits the
useof the vector arithmetic units for the numerical loop. The nonvectorizable memory
transfers are isolated to separate loops that could be made more efficient by using
assemblylanguage subroutines (albeit in scalar mode). This formulation of the indexed
SAXPYis known as a GATHER-SAXPY-SCATTER (GSS) implementation, for the
operations performed in turn by the three loops.

On a CRAY-l computer, the original indexed SAXPY loop written in FORTRAN
executesat a maximum rate of about 4 megaflops, much less than the maximum rate
of 155 megaflops this machine can achieve for other operations. Woo and Levesque
[11] analyzed the GSS formulation and showed that its maximum rate in assembly
language was around 8 megaflops. Alternatively, a good assembly language
implementation of the original loop that uses only the scalar hardware performs
asymptoticallyat 13 megaflops (see [10]). This implementation is never slower than
theGSS formulation, demonstrating that the SAXPYI operation is essentially a scalar
computation for the CRAY-l.

In contrast, the standard implementations of banded or variable banded Gaussian
elimination algorithms use dense SAXPY operations or dense dot products as their
fundamental inner-loops. Such implementations can achieve vector speeds on vector
computers. However, they usually do not approach the asymptotic speeds of these

rm) April 15, 1987.
shington 98124.

305



306 J. G. LEWIS AND H. D. SIMON

machines because the vector lengths are limited by the bandwidth, which shouldnot
become very large. Still, the possibility of using the vector hardware for these scheme~.
and the inherent performance limitation of the indexed SAXPY loop has led to the
conventional folk wisdom that (variable) banded factorization schemes will usually
outperform general sparse Gaussian elimination on vector computers.

The vector supercomputers being produced currently, in particular the CRAY
X-MP/4 and the more recent models of the CRAY X-MP/2, are equipped with
hardware facilities that permit memory access according to an index vector. That is,
these machines permit the GATHER and SCATTER loops to be performed using
vector memory transfers to and from a hardware vector register. This gather/scatter
hardware leads to a much faster implementation of SAXPYI by using the GSS
formulation. The assembly language coded implementation in VectorPak reaches 78
megaflopsasymptotically.Somedetailed SAXPYItimingsare givenin Table I below.
These results are reported in [8] and [10], and were obtained by averaging over 50
executions of each loop. In each case the index vector INDEX was set as follows:
INDEX (1) = N, INDEX (2) = N -1,'" INDEX (M) = N -M +1.

The older CRAY Fortran Compiler CFT 1.13 does not make use of the hardware
for gather/scatter. A corresponding VectorPak implementation of SAXPYI has been
developed for CRAY X-MP's without hardware gather/ scatter. Both exhibit the scalar
performance characteristic of the CRAY-1. In contrast the utilization of hardware
gather/scatter either with a compiler directive to CFT 1.14 or with VectorPak shows
a dramatic improvement.

Numerical results. We present two sets of numerical results. The first isolates the
effects of the gather/scatter hardware by comparing the performance of a CRAY
X-MP/24 with this hardware to the performance of an X-MP/24 without this hardware.
The second set of results compares the performance of an X-MP/24 with hardware
gather/scatter to a CRAY I-S (which had no option for such hardware). Together
these results demonstrate that this limited change in the hardware of vector computers
changes the algorithm of choice for many sparse problems.

Our first series of numerical results demonstrates the speed-up which can be
obtained in very large problems taken from several engineering applications by using
hardware for gather and scatter in a general sparse elimination algorithm. We used
the modified minimum degree (MD) algorithm by Liu [7] to reorder seven large
problems taken from the Harwell/Boeing sparse matrix collection [4]. A short descrip-
tion of each problem is given in Table 2 and corresponding ordering statistics are giv~n
in Table 3. All problems, with the exception of LRGPWR, are finite element models
of large three-dimensional structures. All matrices are symmetric and positive definite.

TABLE I

SAXPYI Speed on the CRAY X-MP/24 using I CPU.

(Rates given in megaflops.)

M=10 M = infinity

(ignoring the hardware for gather/scatter)
CFT 1.13 5.0
VectorPak 6.3

(using the hardware for gather/scatter)
CFT 1.14 16.1
VectorPak 16.1

5.7
14.5

54.6
78.6

Problem

STK3562
STK3948
STK 4884
LRGPWR
STl0974
ST1l948
STl5439

Problem

STK3562
STK3948
STK4884
LRGPWR
STl0974
ST1l948
ST15439

The columns are as fo
N Order of the J

Ani Nonzeros in I

Lnz Nonzeros in t

Lsubs Number of di

Fops Number of m

Sops Number of m

The numbers:
LRGPWR have a .
Ofthe theoretical ~
tions.

All problems'
loop. Two implerr
modifying the ori)
effect the vectoriz:
assume the indice
compiler directive~
code was generate
for a CRAY X-MJ

Two further iI
loops with calls to
from VectorPak [
executed twice, us
and then the corre
present the execu
implementations. ,
VectorPak for mac



Idwidth, which should not
ardware for these schemes
UCPY loop has led to the
Ition schemes will usually
computers.
, in particular the CRAY
I,1P/2, are equipped with
) an index vector. That is,
ps to be performed using
:gister. This gather/scatter
XPYI by using the GSS
1 in VectorPak reaches 78
lre given in Table 1 below.
ned by averaging over 50
JDEX was set as follows:
{-M+1.
make use of the hardware
tion of SAXPYI has been
ter. Both exhibit the scalar
Ie utilization of hardware
or with VectorPak shows

suIts. The first isolates the
performance of a CRAY
/24 without this hardware.
X-MP/24 with hardware

such hardware). Together
jware of vector computers

~ speed-up which can be
ring applications by using
ation algorithm. We used
7] to reorder seven large.
:ction [4]. A short descrip-
rdering statistics are given
are finite element models
etric and positive definite.

CPU.

.ty

THE IMPACT OF HARDWARE GATHER/SCATTER 307

TABLE 2

Problem description.

Problem Description

STK3562
STK3948
STK 4884
LRGPWR
STI0974
STI1948
STI5439

Calgary Winter Olympics Coliseum (Olympic Saddledome)
Offshore oil platform
Corps of Engineers model of dam
Electric power network of U.S.
Elevated pressure vessel
R. E. Ginna nuclear power station
Columbia Center (76 story skyscraper)

TABLE 3

Fill-in characteristics of matrices in Table 2.

(Multiple minimum degree ordering.)

The columns are as follows:

N Order of the matrix,

Anz Nonzeros in lower triangle of the original matrix,
Lnz Nonzeros in the Cholesky factor of A,

Lsubs Number of distinct subscripts required for compressed subscripts,
Fops Number of multiply-add pairs performed during factorization,
Sop, Number of multiply-add pairs performed during solve.

The numbers in Table 3 show that the factors of all but the power network problem
'LRGPWR have a substantial number of nonzeros per row. We expect to realize much
of the theoretical speedups due to hardware gather/ scatter on these practical applica-
tions.

All problems were solved using four different implementations of the key SAXPYI
loop. Two implementations were derived from a single FORTRAN code created by
modifying the original source code by the insertion of a few compiler directives to
effectthe vectorization of the key loops. (As discussed earlier, the compiler cannot
assume the indices are distinct unless told so.) The FORTRAN code with inserted
compilerdirectives was then compiled twice under CFT 1.14. Using a compiler option,
code was generated separately for a CRAY X-MP with hardware gather/scatter and
for a CRAY X-MP without hardware gather/scatter.

Two further implementations were derived by replacing the FORTRAN SAXPYI
loopswith calls to an optimized CRAY assembly language implementation of SAXPYI
from VectorPak [101. This modified code was also compiled under CFT 1.14 and

~.pexecutedtwice, using the VectorPak library for CRAY X-MP's without gather/scatter
,land then the corresponding library for machines with gather/scatter. Tables 4 and 5

present the execution times obtained for factorization and solution for the four
implementations. All execution times are listed relative to the time obtained calling
VectorPakfor machines with gather/scatter. The actual execution time in seconds for

Problem N Anz Lnz Lsubs Fops Sops

STK3562 3,562 78,174 275,360 22,036 16,355,839 554,282
STK3948 3,948 56,934 647,274 59,935 82,845,152 1,298,496
STK4884 4,884 142,747 736,294 49,812 74,923,505 1,477 ,472
LRGPWR 5,300 8,271 22,764 16,796 142,921 50,828
STl0974 10,974 208,838 994,885 92,969 72,642,932 2,000,744
STl1948 11,948 68,571 650,777 102,569 70,911,248 1,313,502
STl5439 15,439 118,401 1401,129 179,537 143,983,290 2,833,136



308 J. G. LEWIS AND H. D. SIMON

TABLE 4

Relative execution times for sparse matrix factorization.

(Normalized so that VectorPak with g/s = 1.00.)

TABLE 5

Relative execution times for sparse forward and back substitution.

(Normalized so that VectorPak with g/s = 1.00.)

the implementation that calls VectorPak for hardware gather/scatter is given in Table
6, together with the execution times for an envelope factorization based on the reverse
Cuthill-McKee (RCM) algorithm from [5]. This envelope factorization has been
optimized by calling the assembly language implementation of SDOT in VectorPak.

Tables 4 and 5 show clearly the direct benefits of the hardware gather/scatter
feature for general sparse elimination schemes. The factorization and solution of the
structures problems are in some cases almost an order of magnitude faster. Only the
very sparse network problem benefits little because the number of nonzeros per row
is too small. (The factored matrix from LRGPWR has only about 9 nonzeros per row
on average.)

The comparison in Table 6 shows that, contrary to standard expectations, general
sparse methods can outperform envelope solvers on vector computers. Because of the
natural vectorization of envelope methods and the essentially scalar performance of
general sparse methods on earlier vector computers, general sparse methods were
commonly thought to be noncompetitive on vector computers. Table 6 disproves this
assertion.

Our second set of numerical tests was generated to evaluate the impact of the
changing architecture on the choice of numerical algorithms for sparse Gaussian
elimination by comparing performance on a CRAY-IS (always without hardware
gather/ scatter) to a CRAY X-MP with hardware gather/scatter. We solved linear
systems with five test matrices arising in reservoir simulation. These matrices wer.e
proposed as benchmark problems by Sherman [9] and are available through the sparse
matrix collection [4]. All matrices are block seven diagonal unsymmetric matrices

U arising from
systems wid
reverse Cuth
using inner
(RQT) algo
computation
though the \
dissection (,
sparse data:
Improve per
were replac(
SAXPYI.

We obt~
with hardwa
by Nand t1
NZ.

The ave

Obviously h
general spar
than on the
here. The re]
same as on a
the overall fi
of arithmeti<

The blo
X-MP, but t
X-MP and l
30 percent s]
method, usir
in the factol

CFT 1.14 CFT 1.14 VectorPak
Problem no g/s with g/s no g/s

STK3562 6.33 1.14 2.54
STK3948 9.66 1.24 3.25
STK4884 8.70 1.20 3.14
LRGPWR 1.25 0.93 1.17
STl0974 7.24 1.16 2.80
STl1948 8.75 1.22 3.12

ST15439 8.78 1.25 3.15

CFT 1.14 CFT 1.14 VectorPak

Problem no g/s with g/s no g/s

STK3562 6.94 1.48 2.55
STK3948 9.22 1.47 3.13
STK4884 8.77 1.39 3.00
LRGPWR 1.96 1.57 1.11
STl0974 7.45 1.48 2.68

STl1948 5.94 1.50 2.23

STl5439 7.54 1.49 2.68



iven in Table
IIIthe reverse
on has been
n VectorPak.
;ather/ scatter
,lution of the
ter. Only the
eros per row
:eros per row"

ions, general
~cause of the
Jormance of
lethods were
isproves this

npact of the
'se Gaussian
ut hardware
;olved linear
latrices were
gh the sparse
tric matrices

THE IMPACT OF HARDWARE GATHER/SCATTER

TABLE 6

Execution times (see) for factorization and solution routines.

* Required more than 4,000,000 words of memory.

arising from reservoir models on three-dimensional grids. We solved the five linear
systems with each of the five different solution algorithms in SPARSPAK [5]. The
reverseCuthill-McKee algorithm (RCM) is an envelope scheme, which vectorizes well
using inner products. Both the one-way dissection (OWD) and refined quotient tree
(RQT) algorithms use a block partitioning of the coefficient matrix. Much of the
computation in the block elimination scheme also vectorizes with inner products,
though the vector length is generally shorter than in RCM. Finally automated nested
dissection (AND) and quotient minimum degree (QMD) algorithms use a general
sparse data structure and SAXPYI as the inner loop for the factorization. In order to
improve performance, computationally intensive sections of the code in SPARSPAK
were replaced by calls to VectorPak subroutines, in particular by calls to SDOT and
SAXPYI.

We obtained execution times from both the CRAY-I S and on the CRAY X-MP/24
withhardware gather/ scatter. In the tables below we denote the order of the problem
by N and the total number of nonzeros in the upper triangular part of the matrix by
NZ.

The average speedup for these five examples is as follows:

RCM 1.05
OWD 1.14
RQT L17

AND 2.70

QMD 2.74

Obviously hardware gather/scatter has a dramatic impact on the performance of the
general sparse codes (AND and QMD). Both algorithms perform three times faster
than on the CRAY-IS and now are the fastest algorithms among the ones considered
here.The relative performance of the five algorithms on the CRAY X-MP is about the
sameas on a scalar machine: the general sparse algorithms, which attempt to minimize
theoverall fill-in in Gaussian elimination and thus generally perform the least amount
of arithmetic, are the most efficient.

The block partitioning methods, OWD and RQT, execute faster on the CRAY
X-MP, but their relative speedup is simply due to the faster clock rate on the CRAY
X-MP and unrelated to hardware gather/scatter. In fact neither method achieves the
30percent speedup we expect from the faster scalar speed of the X-MP. The envelope
method,using RCM, is even worse. These methods depend on vectorized dot products
in the factorization. A minor architectural change from the CRAY-IS to the X-MP

309

Factorization time Solution time
Problem RCM MD RCM MD

STK3562 3.421 1.276 0.047 0.033
STK3948 7.487 4.074 0.064 0.055
STK4884 4.071 4.129 0.065 0.066
LRGPWR 3.642 0.102 0.061 0.028
STl0974 * 4.891 * 0.108
ST11948 * 3.871 * 0.094
STl5439 17.440 7.791 0.213 0.152



causes dot prodw
able effect in pn
re'lerl'-al in. the de

A final point
SPAK had been]
it was installed 0
X-MP without ar

library such as Y.
improvements W
implementation. .
Gaussian elimina
as a tool for corn

[1] B. DEMBART AI
tions of Par;

pp. 22-25.
[2] D. S. DODSON

SIGNUM I\

[3] I. S. DUFF, The

[4] I. S. DUFF, R. C

(1982), p. 2<
[5] A. GEORGE AN

Hall, Englev
[6] C. LAWSON, R.

usage, ACM

[7] J. w. H. Llu, M

Software, 11
[8] K. W. NEVES, TJ

[9] A. SHERMAN, ,
J. S. Nolen,

[10] VectorPak Subro
[11] P. T. Woo AND

CRAY-l, Pr

310 J. G. LEWIS AND H. D. SIMON

EXAMPLE1
N = 1,000, NZ = 2,750

Total IS
CllA Y-}3 CJiAY X-MP/24

Algorithm Factor Solve Factor Solve Total X-MP

RCM 0.309 0.010 0.291 0.008 1.07
OWD 0.439 0.018 0.389 0.016 1.13

RQT 0.412 0.024 0.361 0.020 1.14
AND 0.187 0.011 0.086 0.007 2.13
QMD 0.137 0.010 0.065 0.006 2.07

EXAMPLE2
N = 1,080, NZ = 14,630

Total IS
CRAY-IS CRA Y X-MP/24

Algorithm Factor Solve Factor Solve Total X-MP

RCM 1.509 0.019 1.436 0.013 1.05
OWD 1.514 0.019 1.439 0.014 1.05

RQT 3.011 0.037 2.538 0.027 1.19
AND 2.523 0.036 0.733 0.012 3.43
QMD 3.912 0.041 1.015 0.013 3.85

EXAMPLE3
N = 5,005, NZ = 15,028

Total IS
CRAY-IS CRAY X-MP/24

Algorithm Factor Solve Factor Solve Total X-MP

RCM 2.648 0.055 2.615 0.043 1.02
OWD 4.134 0.101 3.516 0.081 1.18
RQT 3.774 0.124 3.229 0.103 1.17
AND 2.871 0.071 0.925 0.034 3.07
QMD 2.936 0.069 0.941 0.035 3.03

EXAMPLE4
N = 1,104, NZ = 1,341

Total 1S
CRAY-1S CRAY X-MP/24

Algorithm Factor Solve Factor Solve Total X-MP

RCM 0.119 0.008 0.111 0.007 1.08
OWD 0.214 0.020 0.186 0.017 1.16
RQT 0.182 0.024 0.156 0.020 1.17
AND 0.131 0.010 0.064 0.006 2.01
QMD 0.087 0.010 0.046 0.006 1.87

EXAMPLE5
N=3,312, NZ= 11,025

Total 1S
CRAY-IS CRAY X-MP/24

Algorithm Factor Solve Factor Solve Total X-MP

RCM 1.069 0.031 1.060 0.025 1.01
OWD 2.239 0.068 1.926 0.055 1.16
RQT 1.974 0.080 1.693 0.063 1.17
AND 1.984 0.048 0.688 0.023 2.86
QMD 1.896 0.046 0.650 0.023 2.88



Total X-MP

THE IMPACT OF HARDWARE GATHER/SCATTER 311

1.07
1.13
1.14
2.13
2.07

causes dot products to have a greater vector start-up time. This change has a consider-
able effect in practice. The combination of the two architectural changes causes a
reversal in the desirability of different ordering algorithms.

A final point is worth making concerning a software issue. Our version of SPAR-
SPAK had been modified with calls to computational kernels several years ago when
it was installed on the CRAY-IS. These test examples were run again on the CRAY
X-MP without any code modifications. Through computational kernels from a kernel
library such as VectorPak the application programmer reaps the benefits of hardware
improvements without concerning himself with the often subtle details of a new
implementation. The success in using hardware gather/scatter in the context of sparse
Gaussian elimination is one example validating the concept of computational kernels
as a tool for combining portability and optimality on advanced architectures.

Total IS

Total X-MP

Total IS

Total X-MP

1.05
1.05
1.19
3.43
3.85

REFERENCES

1.02
1.18
1.17
3.07
3.03

[I] B. DEMBART AND K. NEVES, Sparse triangular factorization on vector computers, in Exploring Applica-

tions of Parallel Processing, Electric Power Research Institute, EL-566-QR, Palo Alto, CA, 1977,
pp. 22-25.

[2] D. S. DODSON AND J. G. LEWIS, Proposed sparse extensions to the basic linear algebra subprograms,
SIGNUM Newsletter, 20 (1985), pp. 22-25.

[3] I. S. DUFF, The solution of sparse linear equations on the CRA Y-l, CRA Y Channels, 4 (1982), pp. 4-9.

[4] I. S. DUFF, R. GRIMES, J. LEWIS AND W. POOLE, Sparse matrix test problems, SIGNUM Newsletter,
(1982), p. 22.

[5] A. GEORGE AND J. LIU, Computer Solution of Large Sparse Positive Definite Linear Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[6] C. LAWSON, R. HANSON, D. KINCAID AND F. KROGH, Basic linear algebra subprograms for Fortran
usage, ACM Trans. Math. Software, 5 (1978), pp. 308-323.

[7] J. W. H. LIU, Modification of the minimum degree algorithm by multiple elimination, ACM Trans. Math.
Software, 11 (1985), pp. 141-153.

[8] K. W. NEVES, The impact of changing architectures, Rep.ort ET A-T~ 26, Boeing Computer Services, 1985.
[9] A. SHERMAN, Linear Algebra for Reservoir SimulatIOn Comparlson Study of Numerlcal Algorlthms,

J S Nolen Associates, 1984. S . 1986
[10] Vect~rPak subrou

J
tin

M
e L

L
ibrar

E
Y

S

u'

Q

s

U

e

Er' s;:":~:~'r~~;:r:;~:?e°~~~~~~~i;n~~:~7;e ~~i:eu~;be;~~~e~~d the'[II] P. T. WOO AND. . EV, ..,
CRA Y-l, Proc. 6th SPE Symposium on ReservOIr SimulatIOn, 1982.

Total IS

Total IS

Total X-MP

1.08
1.16
1.17
2.01
1.87

Total IS

Total X-MP

1.01
1.16
1.17
2.86
2.88


